RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. SECOND SEMESTER EXAMINATION, AUGUST 2021

FIRST YEAR (BATCH 2020-23)

Date : 12/08/2021 Time : 11.00 am - 1.00 pm

INDUSTRIAL CHEMISTRY (Honours) Paper : IV [CC 4]

Full Marks : 50

<u>Unit – I</u>

Answer any five questions

- a) Which of the following molecules may show a pure rotational microwave absorption spectrum:
 (a) H₂O, (b) H₂O₂, (c) NH₃, (d) N₂O
 - b) The average spacing between successive rotating lines of CO_2 is 3.826 cm⁻¹. Determine the Temperature which gives most intense spectral line at 3. [1+4]
- 2. Derive an expression for the value of J corresponding to the most highly populated rotational energy level of a diatomic rotor at a temperature T remembering that the degeneracy of each level is 2J + 1. Evaluate the expression for ICl (for which $B = 0.1142 \text{ cm}^{-1}$) at 25°C. Repeat the problem for the most highly populated level of a spherical rotor, taking note of the fact that each level is $(2J + 1)^2$ -fold degenerate. Evaluate the expression for CH4 (for which $B = 5.24 \text{ cm}^{-1}$) at 25°C.
- 3. a) Why rotation along bond axis of a linear molecule is microwave inactive? Mention any two points.
 - b) Find the expression of zero point energy for a SHO and Anharmonic oscillator.
 - c) Derive the expression of dissociation energy of a molecule.
- 4. a) Calculate the frequency of the $J = 3 \leftarrow 2$ transition in the pure rotational spectrum of ${}^{12}C^{16}O$. The equilibrium bond length is 112.81 pm.
 - b) An object of mass 2.0 g suspended from the end of a spring has a vibrational frequency of 3.0 Hz. Calculate the force constant of the spring.
 - c) The rotational Raman spectrum of ${}^{35}Cl_2$ (m(${}^{35}Cl)$ = 34.9688 u) shows a series of Stokes lines separated by 0.9752 cm⁻¹ and a similar series of anti-Stokes lines. Calculate the bond length of the molecule. [2+1+2]
- 5. a) Write down the expression of energy level (in cm⁻¹) and from it, derive the general expression of gap between two consecutive energy levels and two consecutive spectral lines for both rotational and vibrational spectra (in cm⁻¹) considering the Rigid Rotor and SHO model.
 - b) Suppose we have a sample of HCl. Now, how can we use Infrared spectroscopy to determine the presence and abundance of isotopic Chlorine in the sample? Explain nicely with proper diagram. [3+2]

[5×5]

[2+1+2]

[5]

6. a) The vibrational wavenumbers of the following molecules in their v=0 states are: HCI: 2885 cm⁻¹; DCI: 1990 cm⁻¹; D₂: 2990 cm⁻¹; and HD: 3627 cm⁻¹.

Calculate the energy change, in kJ/mol of the reaction: $HCl + D_2 \rightarrow DCI + HD$ and determine whether energy is liberated or absorbed.

(Hint: Consider the zero point energies of the four molecules concerned.)

- b) The equilibrium vibration frequency of the iodine molecule, is 215 cm^{-1} , and the anharmonicity constant x is 0.003; what, at 300 K, is the intensity of the 'hot band' (v=1to v=2 transition) relative to that of the fundamental (v=0 to v= 1)?
- 7. a) Which of the three vibrations of an AB2 molecule are infrared or Raman active when it is (i) angular, (ii) linear? Explain with reason.
 - b) Derive the energy gap between the incident radiation and the first stokes line in pure rotational Raman spectra considering the Rigid Rotor model. Also determine the energy-gap between two successive anti-stokes lines.
- 8. a) Draw a perfect Jablonski diagram showing all the possible excitation and de-excitation processes.
 - b) Fluorescence always occurs from the 1st excited state and never from the other excited states. Explain with reason.
 - c) Write down the Stokes' Rule in case of Fluorescence. In normal condition, there is always a deviation from the rule, but at very low temperature, the deviation disappears. Elucidate the fact with proper reasoning.

<u>Unit – II</u>

Answer <u>any five</u> questions

[3+2]

[5×5]

9.	a) b)	What is a metallochromic indicator? Give an example.How will you estimate the amount of Ca^{2+} and Mg^{2+} in a mixture complexometrically?[2+3]	3]
10.	a) b)	Explain masking and demasking with suitable example. Distinguish between iodometry and iodimetry. [3+2	2]
11.	a) b)	Outline the principle for the estimation of Ni(II) gravimetrically.Explain the role of buffer in a complexometric titration.[3+2]	2]
12.	a) b) c)	Explain the role of syrupy phosphoric acid in the titration of Fe^{2+} with standard $Cr_2O_7^{2-}$ solution. Name a redox indicator. What is oxine? [3+1+1]	[]
13.	a) b)	Distinguish between accuracy and precision. What is meant of Normal (or Gaussian) distribution curve? What is its significance? [2+3]	3]
14.	a)	The mean of four determinations of the copper content of a sample of an alloy was 8.27 per cent with a standard deviation of 0.17 per cent. Calculate the 95% confidence limit (C.L.) for the true value. [Given: The value of 't' for the 95% C.L. with three degrees of freedom is 3.18]	

b) Mention the composition of Zimmermann-Reinhardt (Z.R.) solution. [3+2]

- 15. a) Briefly enumerate the underlying principle for the estimation of Vitamin C.
 - b) Mention the role of ZnO paste in the volumetric estimation of Mn in a pyrolusite ore.
- 16. a) 2.75 gm sample of brass is dissolved in acid and the volume is made upto 250 mL. 25 mL of this stock solution is pipetted out and is titrated iodometrically with 0.1015 N standard $Na_2S_2O_3$ solution to give 16.5 mL titre value. Determine the % of Cu in the sample.
 - b) 0.452 gm of AgNO₃ gave a precipitate of 0.415 gm AgCl. Calculate the % of Ag in the sample (At. wt. of Ag = 108). [3+2]

[3+2]

_____× _____